

II Semester M.Sc. Degree Examination, June 2015 (RNS) (2011-12 and Onwards) MATHEMATICS

M - 204 : Partial Differential Equations

Time: 3 Hours Max. Marks: 80

Instruction: Answer any five full questions. Choosing atleast two from each part.

	PART-A	
1,	a) Explain the method of characteristics for solving semilinear/quasilinear/no linear first order PDEs.	6
	b) Solve $xu_y + yu_y = xe^{-y}$ with the data $y = 0$ on $y = x^2$.	5
	 Obtain the solution of (y - u)u_x + xyu_y + xu = 0 using the method of characteristics. 	5
2.	Using the method of characteristics or otherwise solve the following:	
	a) $(u^2 - y^2)u_x + xyu_y + xu = 0$ with $u = y = x, x > 0$.	5
	b) $u_1 + uu_x = 0$, $t > 0$ with $u(x, 0) = \begin{cases} 1 & \text{for } x \le 0, \\ 1 - 2x & \text{for } 0 \le x \le 1, \\ -1 & \text{for } x \ge 1. \end{cases}$	5
	c) $u_x u_y = u$ with $u(0, y) = y^2$.	6
3.	a) Classify i) u _{xx} + xu _{yy} = 0, x≠0 and ii) (n - 1) ² u _{xx} - y ²ⁿ u _{yy} = ny ²ⁿ⁻¹ u _y as being hyperbolic or parabolic or elliptic. Reduce the equations to their canonical forms.	(5+6)
	 Obtain the general solution of u_{xxx} + u_{xxy} - u_{xxy} - u_{xyy} = e^{xxyy} + sin(x + 2y) by a method. 	iny 5
4	Explain Monge's method of solving $F(x, y, z, p, q, r, s, t) = 0$ and using the method obtain the solution of the equation $r + 4t = 4 xy$.	16

8

8

8

6

PART-B

a) Arrive at the classical D' Alembert solution of the wave equation

$$\begin{split} \frac{\partial^2 u}{\partial t^2} &= C^2 \frac{\partial^2 u}{\partial x^2} \; ; \; -\infty < x < \infty, t \geq 0 \\ \text{subject to} \quad u(x,0) &= f(x) \\ &= \frac{\partial u}{\partial t}(x,0) = g(x) \end{split}$$

Use an appropriate Fourier transform for the purpose.

- b) Using the method of separation of variables obtain the general solution of the three-dimensional wave equation in cylindrical polar coordinate system.
- 6. Solve the Dirichlet and Neumann problems involving the Laplace equation in the 16 upper half-plane.
- 7. a) Illustrate Duhamet's principle using an IBVR involving a one-dimensional 8 diffusion equation.
 - b) Using the method of separation of variables obtain the solution of the threedimensional diffusion equation in spherical polar coordinates.
- 8. a) Obtain a three-term homotopy-perturbation general solution of he IBVP.

$$u_{tt} = \frac{x^2}{2} u_{xx}$$

$$u(x, 0) = x$$

$$\frac{\partial u}{\partial t}(x, 0) = x^2$$

- b) Explain similarity transformation through an appropriate example
- c) Write down a weak formulation of

a)
$$u_{xx} + u_{yy} = x^2 + y^2$$
 and

b)
$$u_{xx} + u_{yy} + a^2 u = 0$$
 (a constant).